

S.A.S Advanced Technologies

Company Introduction

www.sas-tech.com

Main Business

Semiconductor Advanced Services - Post Silicon Engineering

SAS Israel offers a wide range of services under one roof to our customers.

Starting with Engineering sale support, Onsite Field Support Engineers (FSE)

Our partners around the world

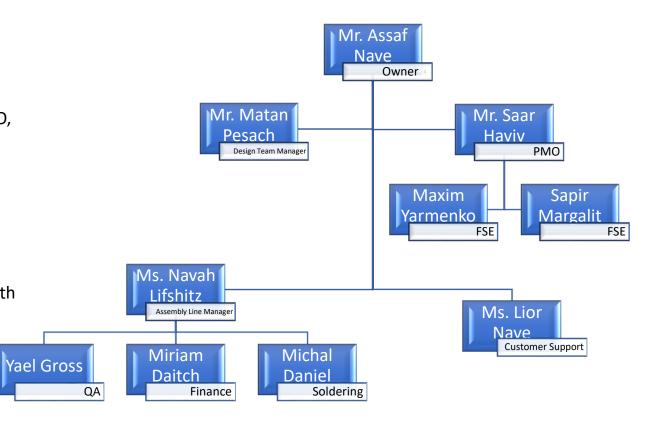
- Leeno industrial inc.(S. Korea) For Build to spec Logic , RF, IC Test sockets.
- Caliber Interconnect Solutions (India) For Design and Simulation before production and final test.
- Hon Prec (Taiwan) Hon Prec Handlers

Product Testing

- Full in-house product validation, per customer specification.
- Write test plans, Make sure it covers all the important requirements.

SAS Team members

Leadership and Reporting


Each department is led by an expert who reports directly to the CEO, ensuring clear lines of communication.

Efficient Decision-Making

This structure allows efficient decision-making and alignment with company objectives.

Our company is structured into several key departments, staring with Product Development, Fabrication and Assembly, Support.

structure allows for efficient decision-making and clear lines of communication, ensuring that our company's objectives are met effectively.

Yearly Development 2014-2025

Product Line Expansion

In 2014, Partnership with Leeno Industrial Inc.

we expanded our product line and entered new markets, showing significant growth and diversification.

Workforce Doubling

By 2017, we had doubled our workforce and increase our growing operations.

Adaptation to Pandemic

In 2020, Partnership with Caliber Interconnect Solutions,

The pandemic presented challenges, but we adapted quickly with a remote work model and digital transformation.

Sustainability and Community

As of 2023, Partnership with Hon Precision on Handler

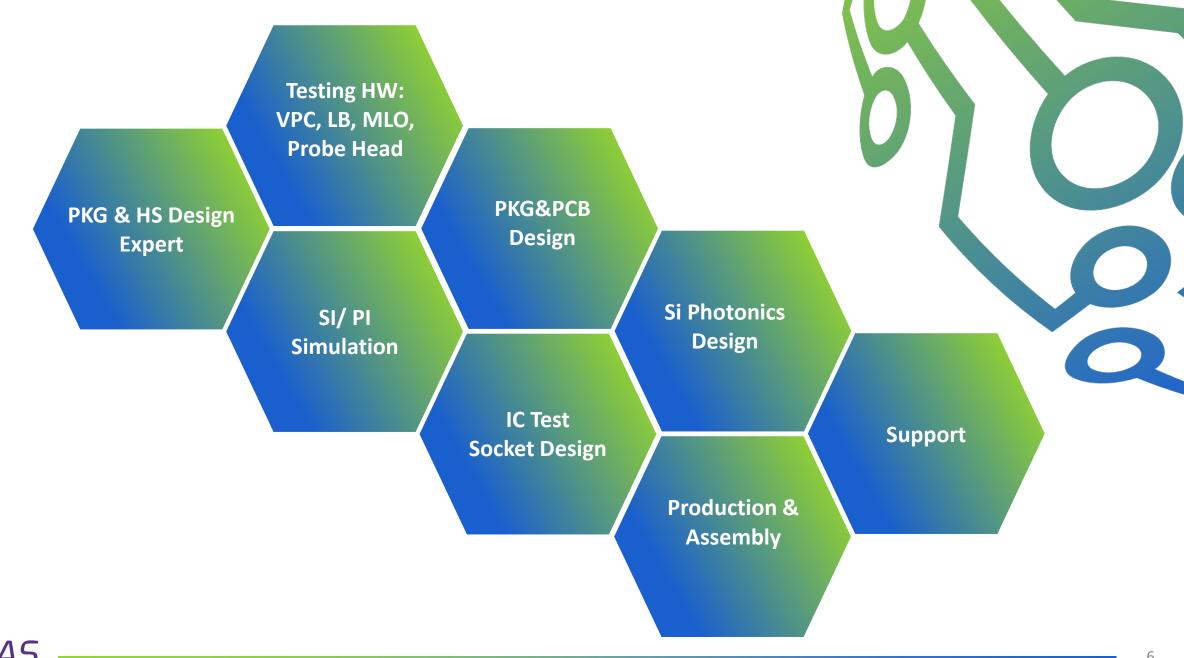
Support we focus on sustainability and community engagement, continuing to innovate and grow responsibly.

Design & Development

Silicon test engineering IC package design PCB design SI/PI Simulation Analysis

IC Test Sockets

Build to Spec IC Test Socket Design Electrical and Thermal Simulation Cooling Thermal Solutions.


Layout & Simulation

Layout expert in all Cad Tools Controlling FAB DFM Gerber and Assy file control

Handler

HT-1024 / HT-1026 series HT-1028 / HT-1016 / HT-1032 series HT-9046MX

Quantum Device Type	Description	Layout & I/O Needs
Superconducting Qubits	Josephson junctions, operate on microwave frequencies	GCPW, controlled impedance, cryog enic temperature compattibility
Quantum Dots	Electrons confined in semiconductor nanostuctures	Dense fanout, low-noise bias lines
Ion Traps	Trapped ions manipulated with electric fields, laser coling	High voltage control, laser delivery, vacuum compatibility
Neutral Atoms	Atoms trapped in optical lattices, operated via light	Free-space optics, laser access, magnetic shieldng

Quantum Device Design approach

Quantum System Type	Signal Requirements	Layout Implications	Approach
Superconducting Qubits	Microwave (4–10 GHz), flux bias lines	Impedance-controlled traces, crosstalk isolation	Use CPW or stripline, strict shielding
Quantum Dots	DC bias, fast pulses (GHz)	Dense routing, minimized inductance	Short loops, filtering at chip interface
lon Traps	RF traps + DC bias	Mixed signal domains, high-voltage zones	RF shield cages, decoupled layers
Spin Qubits	Low-power RF and gate control	Ultra-compact, low-noise	Integrated low-pass filtering, minimal stub vias

TEST PLATFORMS

Quantum Device Characterization

Cryogenic test benches for validating qubit prototypes

Cryogenic Control Chip Evaluation

Boards for testing cryo-compatible DACs, ADCs, and digital-to-qubit signal chains

Digital Control Chain Testing

Modular setups for pulse pattern control evaluation

Wafer-Level Test Hardware

Probe cards and automation interfaces for wafer characterization

SAS is Certifiyed By Azenta to Deal with Cryo pico bio storage

QUANTUM HARDWARE R&D SUPPORT

Hardware Area What SAS Can Deliver

Cryo PCBs & Packaging

Custom boards with cryo-rated materials, HF layout,

bonding services

Mixed-Signal Test Chips Prototype DAC/ADC, PLL, digital drivers

FPGA Pulse Sequencing Boards Real-time deterministic signal modulation

QPU Interposer Design

Layouts for die-to-board signal transfer, with matched

impedances

Evaluation Platforms Modular test benches, system-level debug

environments

Thermal/EMI Fixtures Design + fabrication of cryo enclosures and heatsinks

Company Medical Certification

BioStore Pico Service Training Certificate This is to certify

Saar Haviv

Is now licensed to preform Installation (IQ, OQ PQ), on BioStore Pico system after successfully completing hands on installation and technical training.

The following topics where covered:

- Operation of the BioStore Pico System
- Installation of the BioStore Pico System
- System Qualification (IQ, OQ PQ)
- · Handling of Liquid Nitrogen

Vertical Probe Card

HW Design: VPC, LB, MLO, Probe Head

Advantest

93K EXA T2000 V93K T6575 T6577 EVA100

Teradyen

Ultra Flex Plus
UltraFlex
J750
MicroFlex
D750
Catalyst

Credence

D10
Dx
Fusion MX
Fusion CX
Sapphir
ASL3000
Quartet
Schlumberger

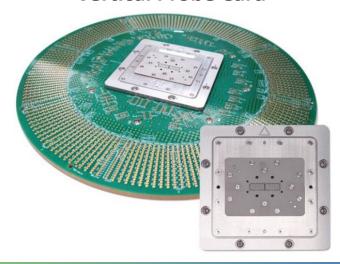
Fusion

Chroma

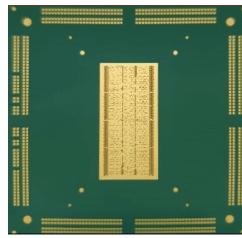
Chroma 3360 Chroma 3650

Others

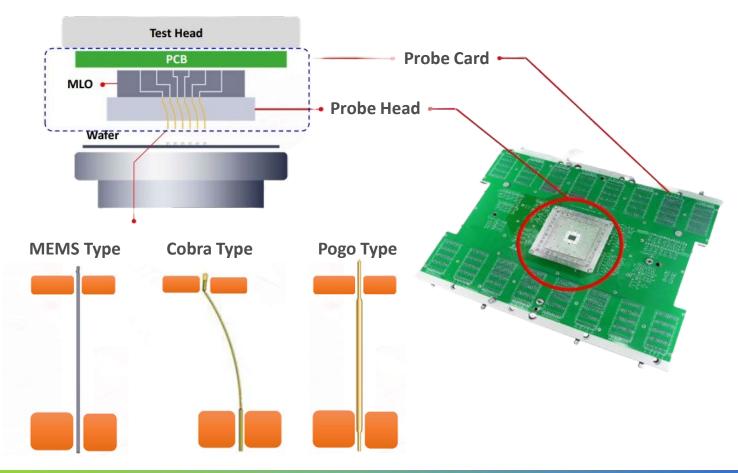
YT5100-S100 E320 V50 SG9000


Eagle


ETS-88 ETS-364


Load Board

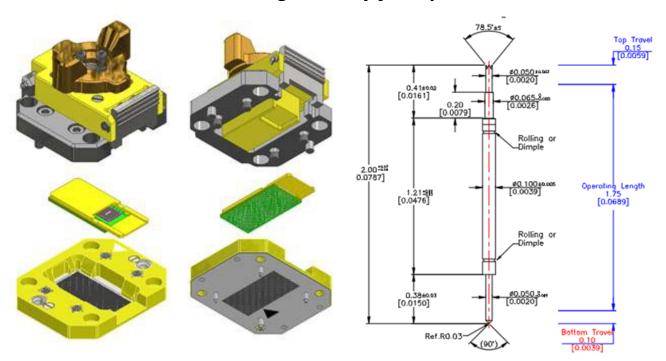
Vertical Probe Card



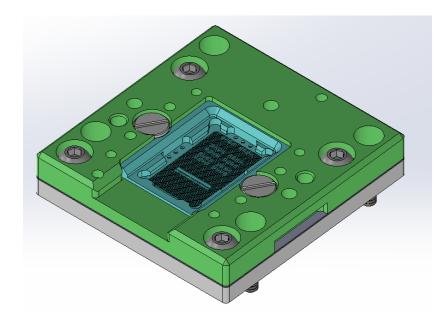
Testing HW: VPC + MLO + Probe Head Assembly

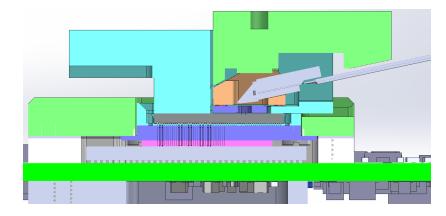
Probe card is a type of testing device used in semiconductor manufacturing to test integrated circuits (ICs) on a wafer **Probe Head** we mainly use 3 type of pins: MEMS, Cobra, Pogo.

We decide which pin to use per pitch, force, performance and per vendor capability.


HW Development: Die Level Testing

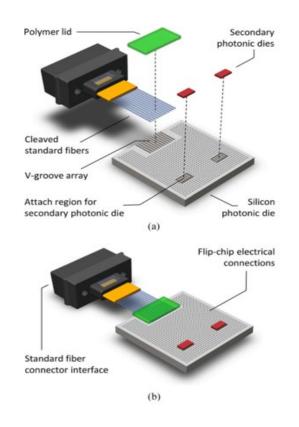
We can support Die Level Testing + Optics.

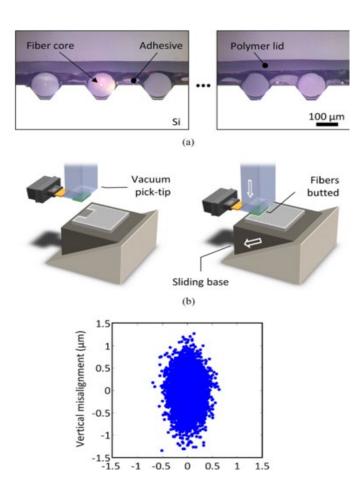

Minimum pitch is 110um using pogo pin solution.

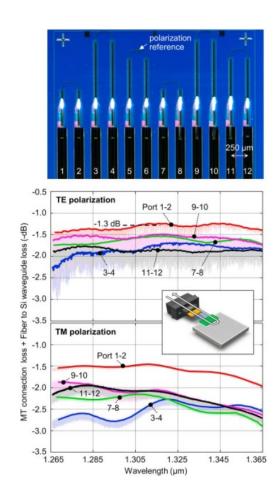

Maximum frequency is up to 56GHz (40GHz is standard).

Die Level Testing + Cavity for Optics

Sagitta X16 – Die Level Testing + Optics




Parallelized fiber assembly using V-Grooves features on the Silicon.


V-Groove creates Self Alignment feature thus allowing to meet very strict tolerances of up to +/-2um.

Right now, IBM has experience with 12 Fibers Array coupling and they are working on 16 next.

A peak performance of -1.3 dB is seen on port 1-2 with a 0.7 dB penalty over a ~ 100 nm bandwidth and all polarizations.

Fiber Coupling V-Groove

2D & 3D schematics of parallelized fiber assembly.

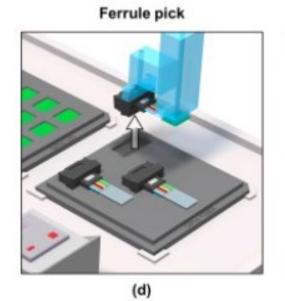
A polymer buffer is used to prevent tooling contamination with assembly adhesive.

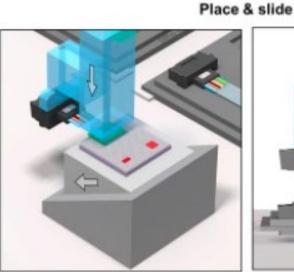
The assembly steps are illustrated in (c)–(f).

A dual vacuum pick-tip, attached to the arm of a standard high-throughput tool,

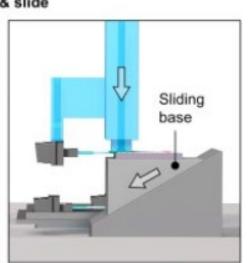
is used to pick the buffer first and the fiber stub second.

Then, the fiber array is pressed into an integrated V-groove array on chip.

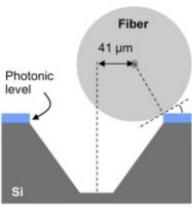

The chip resides on a sliding base that trigonometrically transfers part of the vertical assembly force into a horizontal force used to butt the fibers on the waveguide couplers integrated on chip.

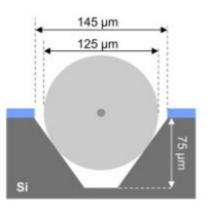

The sliding base is shown in perspective view in (e) and side view in (f).

Fibers & V-Groove Dimension/Pitch can be seen in the pictures to the right.


Buffer pick Dual pick-tip

(c)





(e)

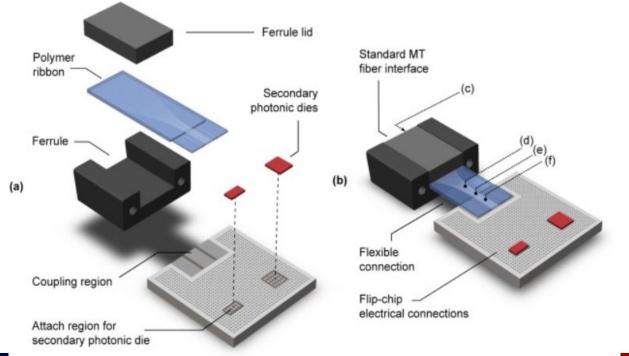
Fiber Coupling Polymer Waveguides

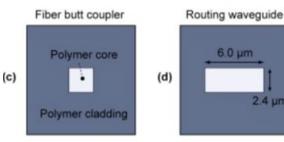
Parallelized fiber assembly using Polymer Waveguides on the Silicon.

lithographically of a Polymer Ribbon and then assembly on ferrule (To support) and fixed by the lid.

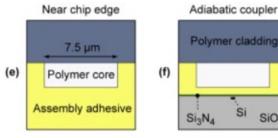
This process replicate a standard optical fibers array coupled together to standard MT interface.

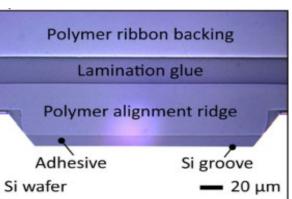
The polymer waveguide is then adiabatically widened to a higher-confinement routing waveguide. Any routing design can be used.


The layout used here is a simple pitch transformation from the standard

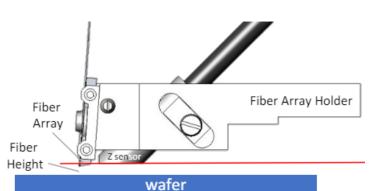

250μm fiber pitch at the MT interface to a 50μm pitch at the chip interface.

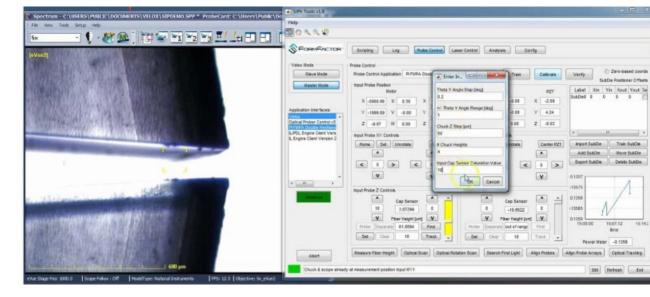

This compliance is expected to improve thermo-mechanical reliability when compared to direct fiber assembly and other rigid connections.


This coupling method results in low package profile and the geometric compatibility with flip-chip electrical connections can notably improve thermal management.


A peak performance of -1.4 dB is seen on port 9–10 with a 0.8 dB penalty over a \sim 100 nm bandwidth and all polarizations

Silicon Photonics – Wafer Level Testing & Calibration


Multi-contact RF Probes



RF Calibration Substrates

RF Calibration Software

Fiber Array @ Y° Incident Angle

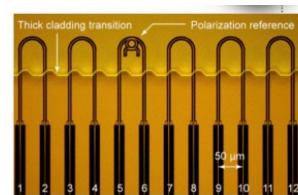
Optical Loopback – Fiber Coupling to PIC

There are three basic approaches

Building a normal (non-photonic) chip, the fabrication is the bulk of the cost and assembly and test is perhaps 20%, while for silicon photonics it is the other way around. Building the chip is cheap, but the cost of the package and the additional steps required for assembly and test make up about 80% of the cost.

Active and Powered up:

The chip is powered up (in a test mode), the fiber is aligned with the chip, and the chip gives feedback as to how perfect the optical connection is so that the connection can be adjusted


Active but not powered up:

The fiber is aligned with the chip but it is not powered up. But there are waveguides on the chip that allow the quality of the alignment to be measured externally even so since waveguides transmit light even if not powered up

Passive:

The assembly process assembles the fiber and the chip in a way that does not depend on feedback about how much light is getting through. Simpler and Cheaper approach for HVM.

Optical Loopback

To ensure the right support, SAS have the following Partnership and Support –

Solid Validation Required Before Delivery

- Taiwan Zentest, Located in Hsinchu, vast work experiance in TSMC, KYEC, and other OSATS.
- Korea TFE, Located in Seoul, specialized in BIB, LB, IOT, vast work experience in Amkor.
- India ArtSemi, Located in Bangalore.

Backup

Israeli Semiconductor Landscape

They returned to their "promised land.

Israel, is covered by two-thirds of the desert and has a population of less than 10 million.

In such a small country with harsh conditions, it is home to **nearly 200 semiconductor companies**.

Attracting research and development centers of giants like Nvidia, Intel Apple, Samsung, and Qualcomm.

Through its high-tech industry, Israel has become the only developed country in the Middle East. How did Israel achieve this? What has its semiconductor industry experienced?

After being conquered by the Roman Empire, the Jewish people began a wandering journey that lasted for over 2,000 yeas. Finally, in 1948, the State of Israel was established, providing a homeland for the Jewish people.

Places to see while visiting us

Jerusalem

Tel –Aviv

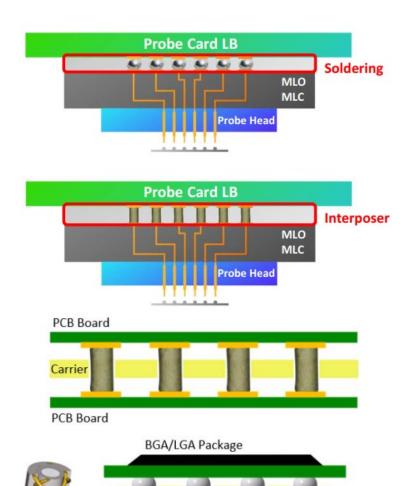
Jaffa

Dead sea

Haifa - Bahá'í Gardens

Testing HW: Probe Assembly Structure

Reflow Process


- Consistent temperature environment (vapor chamber)
- Short cycle time
- Lower cost
- Mature & solid process installation

Interposer / i-Bump

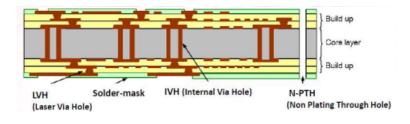
- CP (Critical Parameter) compatible with FT (Functional Test)
- Easy to replace space transformer
- Short repair time
- Mechanical strength consideration
- Pitch limited, usually >= 0.5mm

i-Bump is made of braided copper-alloy(6/12) wires surrounded by a conductive or non-conductive polymer jacket, which is suitable for board-to-board application and low insertion test solution.

Carrier

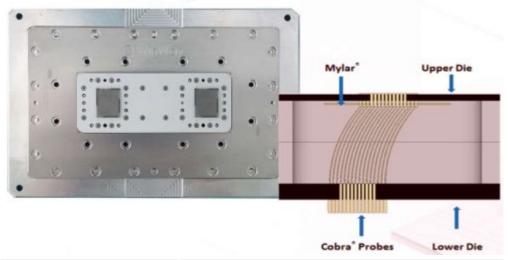
PCB Board

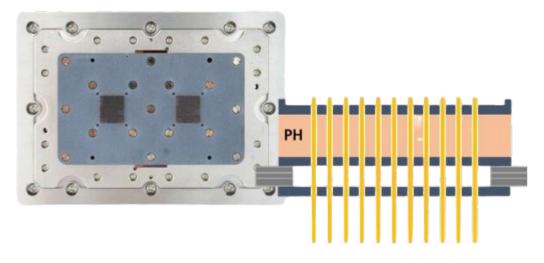
Testing HW: Probe Card High Level DFM


	Pitch >=0.5mm	Pitch=0.35mm	Pitch=0.30mm	Pitch=0.25mm
Board Thickness	8.0 → 12.0mm	5.58 → 6.0mm	3.2 → 4.0mm	3.0 → 3.5mm
Layer Count (Max)	90L → 100L	60L → 68L (Single Lam)	30→40L (Single Lam)	30L→34L (Single Lam)
Drill Dia (mm)	0.2	0.15	0.1	0.1
Aspect Ratio	40:1→60:1	37:1→40:1	32:1→40:1	32:1→40:1
Max 1oz Layer Count	60L→80L	40L→50L	20L → 30L	20L → 30L
Pin Count (BGA DUT)	24K → 32K	16K → 24K	8K → 16K	3K → 5K
BGA pad size (Top)	0.35mm	0.2 → 0.22mm	0.17mm	0.14mm
Max PCB Size	482.6 X 609.6 mm – 19X24 inch			

Testing HW: MLO High Level DFM

	Typical Values
Substrate Size (Max)	100X100mm +/-0.2mm
Thickness Range	0.61mm ~ 3.0mm
DUT Bump Pitch (Min)	55um<=
DUT Pad Size (Min)	40um
Laser Via / Pad Size	25um/40um (Top 6 layers) 60um/100um (Below 10L) 40um/60um (Below 10L)
Layer Count (Max)	16-X-16
Impedance Control	+/-10%
Main BU Material	MCL: E-705G MITSUBISHI: GHPL-972, GHPL-830
Main Core Material	ABF : GX-13, GX-92, GL102, GX-T31 MITSUBISHI : HL-972, HL-832
Surface Finish	ENEPIG, ENIG, HARD GOLD, OSP

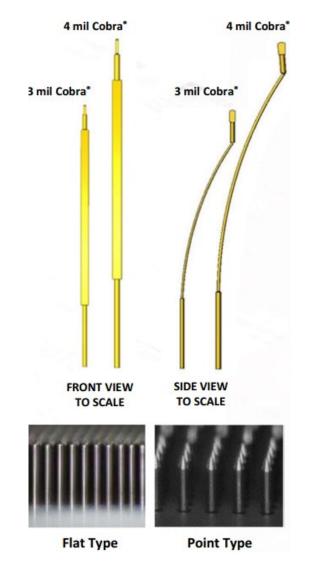



Testing HW: Probe Head Type

Cobra

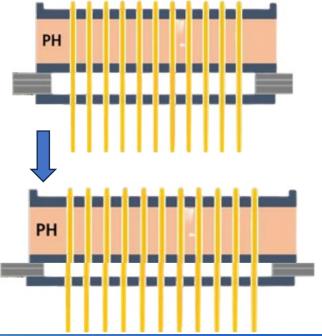
Max. Pin Count (Experienced)	Multi-DUT 30,000 / Single DUT 27,000
Lower die material	Machinable Ceramics
Advantage	 High Contact Life & Stability High Current Allows stronger contact Mature Technology

MEMS



Max. Pin Count (Experienced)	Multi-DUT 35,000 /Single DUT 32,000
Lower die material	Silicon Nitride
Advantage	 High Precision Miniaturized & High-Density Design High Parallel Testing Capacity Lower Contact force

Tip Shape	Flat & Point type
Pitch	80 – 200um
Probe diameter	1.8 – 4mils
Tip Length	12 – 36 mils
Min. Pad Size	45um
High C.C.C.	450mA – 2.2A
Temperature	- 50°C to 150°C
Contact Force	2 – 25gf
Experienced Life Time	3mil → 1.0~1.2 million



Testing HW: MEMS Pin

	WT Series	WS Series
Tip Shape	Flat	type
Pitch	70 – 105um	90 – 130um
c.c.c.	760mA – 1.2A	1.1A – 2.2A
Temperature	- 45°C to 175°C	
Contact Force	1.8 – 4.5gf	2.5 – 3.5gf
Experienced Life Time	Regular ≥ 1 Million , ELT Type 2~3 Million	

- To further increase lifetime, ELT option is available by removing shims as probe tips wear.
- The idea of this concept is to restore the tip length a few times during the life span.

Testing HW: Probe Card Testing Capability

PRVX VI Probe Card Analyzer

PB6500 Probe Card Analyzer

Probe Scan Analyzer

Probe Card OQC SPEC

項目Item	檢查項目Check Item	規範值/條件 Specification/Condition
Α	Contact Resistance	≦10 Ω
В	Leakage	Group Pin \leq 3730 nA / IO Pin \leq 10 nA
С	Planarity	<u>≤</u> 1 mil
D	Alignment	≦ 1 mil

Highwire Safty Certufication

CERTIFICATE OF COMPLETION

This acknowledgement certifies that on 03/05/2024

S.A.S Advanced Technologies

has successfully completed the Highwire Independent Safety Assessment Program for the trade

Equipment Supplier (Install and/or Maintenance)

Garrett Burke, President, Highwire

HIGHWIRE

Safety Account Expires: Feb 14, 2025 Injury/Illness Data Valid Until Feb 1, 2025

Safety Assessment Results

Total Score	88 / 100
Injury & Illness	40 / 40 points
No of Fatalities	0:5 points awarded
Days Away	35 / 35
Program Elements	25 / 25 points
Management Systems	23 / 35 points
Review of Safety Manual	Zero discrepancies found

#2b406fb0-b3b9-429d-a3e5-f3320fe7028c

